CHALLENGING CASES IN THE MEDICAL AND SURGICAL MANAGEMENT OF UROLITHIASIS

SWIU 2009

THE PANELISTS

 Amy Krambeck, M.D.: Endourology Fellow, Department of Urology, The Methodist Hospital, Indianapolis, IN

Elspeth McDougall, M.D., FRCSC, MHPE:
 Professor of Urology and Director Surgical Education
 Center, UC Irvine Medical Center, AUA Chair of the
 Office of Education

Kristina Penniston, Ph.D., R.D.: Associate
 Scientist, Department of Urology, Univ. of Wisconsin
 School of Medicine and Public Health

"CHALLENGING CASES"

- Typically comprised of large, complex stones
- Also includes stones in patients:
 - With anatomically complex kidneys
 - With unusual body habitus
 - With relational anatomy to the kidney that makes the kidney inaccessible
 - With complicated medical history
 - At high risk for recurrence

posterior spleen

retrorenal colon

CASE 1

- A 53-yr-old woman with Crohn's disease underwent multiple courses of SWL 15 and 10 years ago for multiple bilateral renal calculi
- Over the last 5 years she has experienced intermittent right flank pain and now has microhematuria
- IVP and CT were obtained. IVP is shown.

Case 1 Bilateral Simultaneous PCNL

Pre-op assess:

- Stone burden in each kidney
- Anatomy of collecting system,
- Renal Scan to determine differential function treat better
 - kidney first
- Sterile urine culture
- If 1st side takes < 3
 hours then do 2nd
 side

Simultaneous Flexible Ureteroscopy & Percutaneous Access

Flexible Ureterorenoscopy
Prone - Head Down 20° Position

PCNL – Steps of the Procedure

- 1. Flexible ureteroscopy with access sheath
- 2. Fluoroscopic + ureteroscopic guided needle puncture of collecting system
- 3. Tract dilation dilating balloon catheter
- 4. Nephroscopy & lithotripsy
- Stent placement & nephrostomy removal
- 6. Foley catheter placement

1.5 F x 35 cm ureteral access sheath passed to the UPJ OEC LEVE

THE INACCESSIBLE CALYX

Solution: DUAL ACCESS - Prone flexible URS

Endoscopic vs Fluoroscopic PCNL UCI Experience

	EndoPCNL	FluoroPCNL	p value
# Pts	51	70	
Stone size	17 mm ³	16 mm ³	NS
No hydro	27%	12%	0.04
Supra costal	80%	44%	
EBL	158 ml	211 ml	0.03
Transfusions	7.8%	21.4%	0.05

Similar BMI, age and ASA for the two groups

Endoscopic vs Fluoroscopic PCNL UCI Experience

	EndoPCNL	FluoroPCNL	p value
OR Time	+ 19 min		
Chest Tube Postop	3.9%	4.2%	NS
Stone Free ≤1mm Sig Residual Fragment >4mm	35% 31%	46% 26%	0.26 0.56
Avg Residual Fragment Size	3.1 mm	3.8 mm	NS
Retreatment Rate	24%	36%	0.19

Similar BMI, age and ASA for the two groups

PCNL Complications - HEMORRHAGE

Post-op Management of PCNL Patients

- Indwelling ureteral stent + Foley catheter
- Non-contrast CT scan AM of 1st post-op day
- D/C Foley and discharge POD 1
- If residual stone then outpatient URS + HoL at 1 week
- If stone free then office stent removal at 1
 week + 24 hr urine evaluation ordered

Simultaneous Bilateral PCNL Literature Review

M Desai et al: J Endourol 2007; 21(5): 508

Avg # of Pts	70 (Range 3 – 198)
Mean OR Time (mins)	107.6 (45 – 248)
Hgb Drop (gm/dl)	1.9 (1.6 – 2.4)
Transfusion Rate	9.4% (0 – 29%)
2 nd Look Nephroscopy	9.9% (3 – 67%)
Mean Length of Stay	5 days (2.5 – 6.6)
Stone Free Rate (KUB)	90% (75 – 100%)

Synchronous Bilateral PCNL: Analysis of Clinical Outcomes, Cost & Reimbursement

A Bagrodia et al: J Urol 2009; 181: 149

	Bilateral Synchronous PCNL	Unilateral Staged PCNL
# of Patients	15	62
Stonefree Rate / 2 nd Look Nephroscopy	73%	-
Mean OR Time (mins)	354	477
Length of Stay (days)	3.1	6.3
Transfusion Rate	0	4.7%
Total Cost Surgeon Reimburse	↓ ↓ (\$275 – 1000)	↑ (\$4 – 5000) ↑

A Fine Balance

The Management of the PCNL Patient

 After surgical treatment of her stones, a 24hour urine collection is obtained. Treatment should consist of:

TV	0.85L	
рН	5.25	
Ca	50	nl (<200 mg/d)
Oxalate	80	nl (<40 mg/d)
Citrate	15	nl >320 mg/d)
Sodium	65	nl (<200 mEq/d)
Uric acid	510	nl (<600 mg/d)

Crohns and Stones

- Risk of: CaOx, CaPhos, ammonium urate stones
 - Chronic diarrhea
 - Malabsorption of calcium and magnesium
 - − Ca⁺⁺ & Mg⁺⁺ malabsorption: ↑oxalate absorption
 - Mg⁺⁺ malabsorption:

 inhibitory potential for CaOx stones
 - Bicarbonate wasting
 - Acid urine
 - Hypocitraturia
 - Excessive fluid losses
 - Increased urine supersaturation
 - Depletion of oxalate-degrading bacteria in GI tract
 - Increased colonic permeability to oxalate with exposure of mucosa to excess bile salts

Excellent topical review... Worcester EM:

Stones from bowel disease. *Endocrinol Metab Clin North Am* 2002;31:979-99

UroRisk * **Diagnostic Profile**

24-h urine profile from a patient with Crohn's disease and a h/o stones

Common features: high oxalate, low urinary calcium, low citrate, low TV

Crohns – Manage Diarrhea

- Increase dietary fiber intake
 - Both soluble and non-soluble fiber recommended
 - Use fiber supplements if necessary
- Limit dietary fat and fried foods
- Limit dietary lactose if lactose intolerant
- Pancreatic enzymes?
- Probiotics & prebiotics (effects on diarrhea recently reviewed by de Vrese & Marteau, J Nutr 2007;137:803S-811S)
 - Enhanced colonization of gut microflora that ferment fibers and carbohydrates not digested in upper GI tract
 - Increased synthesis of fatty acids that support a healthy intestinal barrier (particularly in the lower GI tract)

Probiotic and Prebiotic Sources

Examples

CLASS/ COMPONENT	SOURCE	
Probiotics		
Certain species & strains of Lactobacilli, Bifidobacteria, Yeast	Certain yogurts, other cultured dairy products and non-dairy formulations	
Prebiotics		
Inulin, fructo-oligosaccharides (FOS), polydextrose, arabinogalactan, polyols (lactulose, lactitol) Whole grains, onions, garlic, bananas, honey, leeks, artichokes, fortified foods & beverages, dietary supplement		
•	d Information Council Foundation:	
Media Guide on Food Safety and Nutrition: 2004-2006.		

Crohns - Manage Hyperoxaluria

- Optimize dietary calcium intake
 - From foods as tolerated; supplements probably needed
 - Time intake with meals and other eating occasions
- Reduce dietary oxalate (and oxalate from supplements) if indicated
 - Efficacy, however, is questionable as increased endogenous production and a low calcium intake are considered primary causes [Siener et al, Kidney Int 2003;63:1037-43]
- Eliminate exogenous effectors of oxalate biosynthesis
 - Supplements, foods
- Bile acid binders may work in some cases
- Probiotic supplementation ... strong evidence lacking
- Pyridoxine supplementation ... evidence lacking

Crohns - Manage Hypocitraturia

- Pharmacologic therapy
- Reduce dietary potential renal acid load (PRAL)
 - Foods with highest (+) PRAL are meat, fish, poultry, cheese
 - Foods with net negative PRAL are most all fruits and most all vegetables
 - Milk and yogurt are net neutral
- Enhance exogenous citrate intake
 - Kang *et al*, J Urol 2007;177:1358-62
 - Penniston et al, Urology 2007;70:856-60
 - Touhami et al, BMC Urol 2007;7:18 (rats)
 - Aras et al, Urol Res 2008;36:313-7
 - Tosukhowong *et al*, Urol Res 2008;36:149-55

Negative results:

- Koff *et al*, Urology 2007;69:1013-6
- Odvina CV, Clin J Am Soc Nephrol 2006;1:1269-74

Crohns – Maximize Inhibition

- Fluids appropriate to offset stool losses and to maintain suitably low urine supersaturation
 - Distributed throughout the day
 - Low-sugar, low-calorie beverages recommended
- Magnesium supplementation, if Mg status is low
- Ample antioxidant intake
 - Food sources

Fruits & vegetables

- Supplements (vit. E, vit. C, bioflavonoids...??)
- Reduce stress
 - Diniz *et al*, J Urol 2006;176:2483-7
 - Nahem et al, Int J Epidemiol 1997;26:1017-23

CASE 2

- A 55-yr-old man with recently diagnosed T1c prostate cancer underwent a planning CT in anticipation of XRT
- He is otherwise healthy and has no personal or family history of stones
- How would you proceed?

+ HU 1060

Surgical Treatment Options

- Based on stone location and size
 - SWL
 - Ureteroscopy
 - Percutaneous nephrolithotomy
- Other considerations
 - Composition
 - Stone attenuation (HU)
 - Skin to stone distance (SSD)

Stone Composition

- Not an issue for PCNL and ureteroscopy
 - Ultrasound and/or holmium laser capable of fragmenting all stone compositions
- SWL low success rate
 - Cystine
 - Brushite
 - Calcium oxalate monohydrate

Stone Attenuation

- 30 patients treated with SWL
 - Success rate significantly lower for SA >1000 HU¹
- 120 patients undergoing SWL
 - Success rate 87.5%
 - Stone density > 1000 HU associated with SWL failure¹

- 1. Joseph P, et al. J Urol 2002; 167: 1968-1971
- 2. El-Nahes AR, et al. Eur Urol 2007; 51: 1688-93

Skin to Stone Distance

- 64 patients treated with SWL³
 - SSD center of stone to skin edge
 - >10 cm SSD associated with SWL failure
- Multivariate analysis for SWL failure risk factors:
 - stone composition
 - SSD
 - -SA
- < 900 HU & < 9 cm SSD
 - SWL success independent of stone size, location and BMI
 - 3. Pareek G, et al. Urology 2005; 66: 941-4
 - 4. Perks AE, et al. Urology 2008; 72: 765-9.

FACTORS PREDICTING SWL SUCCESS Perks et al, Urol 72: 765, 2008

Risk Stratification "Success rates"

<900 HU, SSD <9 cm 91%

<900 HU, SSD ≥9 cm 79%

≥900 HU, SSD <9 cm 58%

≥900 HU, SSD ≥9 cm 41%

FACTORS PREDICTING SWL SUCCESS Perks et al, Urol 72: 765, 2008

Risk Stratification "Success rates"

<900 HU, SSD <9 cm 91%

<900 HU, SSD ≥9 cm 79%

≥900 HU, SSD <9 cm 58%

≥900 HU, SSD ≥9 cm 41%

FACTORS PREDICTING SWL SUCCESS Perks et al, Urol 72: 765, 2008

Risk Stratification "Success rates"

<900 HU, SSD <9 cm 91%

<900 HU, SSD ≥9 cm 79%

≥900 HU, SSD <9 cm 58%

≥900 HU, SSD ≥9 cm 41%

 Serum chemistries, including creatinine, potassium, bicarbonate, calcium, phosphorus, uric acid and iPTH were normal. 24-hour urine is shown. Recommended treatment should consist of:

TV	1.85L	
рН	6.1	
Ca	330	nl (<200 mg/d)
Oxalate	38	nl (<40 mg/d)
Citrate	600	nl >320 mg/d)
Sodium	299	nl (<200 mEq/d)
Uric acid	850	nl (<600 mg/d)

Calcium Oxalate Stone Disease

- Often no single risk factor
- Nutrition and pharmacologic therapy is tailored to individual risk factor(s)
 - Frequently, these include:
 - Idiopathic hypercalciuria
 - Hypernatriuria
 - High dietary acid load
 - High (refined) carbohydrate intake
 - Low fiber intake
 - Hyperuricosuria
 - Overweight/ obesity

CaOx Stones - Hypercalciuria

- Pharmacologic therapy
- Reduce dietary salt (NaCl) intake
- Reduce PRAL of diet
- Increase dietary fiber intake
- Ensure optimal calcium intake
 - To regulate GI oxalate absorption, esp. if hyperoxaluric
- Reduce body mass if overweight
- Fish oil supplementation ... evidence from RCTs lacking
- Recommend treatment, if necessary, for other contributors to hypercalciuria:
 - Excessive bone resorption, hyperparathyroidism, sarcoidosis

CaOx Stones - Hyperuricosuria

- Pharmacologic therapy
- Reduce dietary effectors of uric acid biosynthesis
 - Beef, pork, fish, seafood, poultry
 - Note that low-fat dairy is NOT included here
 - High-purine foods
 - Mussels, scallops, herring, anchovies, sardines, mackerel, meat extracts & broths, organ meats, sweetbreads (edible glands of an animal), wild game, gravy
 - Fructose
 - Alcohol
- Reduce PRAL of diet
- Reduce body mass if overweight

CaOx Stones - Hypernatriuria

- Na⁺ increases urinary calcium excretion and decreases efficacy of thiazide diuretics
- Must employ dietary strategies
 - Salt shaker contributes only ~10% of dietary Na⁺
 - Salt sources are rampant in our food supply:
 - Cheese
 - Salty snacks (chips, popcorn, pretzels, crackers, nuts, seeds)
 - Processed/ packaged foods & entrees, convenience foods
 - Baked goods (including breads...)
 - Sauces, dressings, condiments, spice blends
 - Canned vegetables and soups
 - Restaurant foods
 - Sports beverages

Some European nations are legislating the use of salt in food manufacturing & processing

- DRI for Na⁺ is 1,500 mg/d
- AHA recommends <2,300 mg/d
- UL for Na⁺ is 2,300 mg/d
- Most Americans eat 5,000-6,000 mg Na⁺/d
- Risk cutoff for 24-h Na⁺ excretion is 200 mEq (4,600 mg)

Salt Facts

- 1 tsp. salt, 2,325 mg
- 1 tsp. baking soda, 1,000 mg
- 1 Tbsp. soy sauce, 1,000 mg
- Fast foods:
 - 6" Subway sandwich
 - Cold cut trio, 1730 mg
 - Tuna, 1190 mg
 - Sweet onion chicken teriyaki, 1090 mg
 - Culver's
 - Taco salad with shell, 1643 mg
 - Grilled chicken cashew salad, 1369 mg
 - Butter burger with cheese, 1207 mg
 - Pizza Hut
 - Thin crust, cheese only, 1 sl, 600 mg
 - Hand tossed-style crust, "Supreme," 1 sl,
 730 mg

CaOx Stones – Crystal Inhibition

- Increase fruit and vegetable intake
 - Provides dietary alkaline load, K⁺, Mg, fiber, phytate, citric acid and antioxidants
 - All of which inhibit stone formation by various mechanisms
- Increase fluid intake, distributed throughout the day
- Optimize/ increase urinary citrate excretion
- Optimize/ increase urine pH to prevent uric acid nidus for CaOx crystal formation

CASE 3

- A 60-year-old man without previous history of stones noticed tea-colored urine on several occasions
- Subsequently, he has had occasional left flank pain
- Office cysto was negative
- CT and IVP were obtained

Case 3 – Calyceal Diverticulum with Stone

Approach to management

- Observation
- Retrograde ureterorenoscopy
- Antegrade PCNL
- ESWL
- Laparoscopic diverticulectomy

ESWL Treatment of Caliceal Diverticula

E Matsumoto & M Pearle: Advanced Endourology, S Nakada & M Pearle (eds): 2006, pp229 - 249

Stone Free Rate	21% (13 – 58%)
Symptom Free Rate	68% (56 – 86%)

SWL for calyceal diverticula and stones is reserved for relatively small stone burden and radiographically patent diverticular neck.

Calyceal Diverticulum with Stone Retrograde Ureterorenoscopy

- Retrograde ureterorenoscopy
- Identify ostium to diverticulum
- Laser incision into diverticulum
- Remove stone(s)
- Laser fulgurate the diverticulum
- Ureteral stent

Retrograde Treatment of Caliceal Diverticula

E Matsumoto & M Pearle: Advanced Endourology, S Nakada & M Pearle (eds): 2006, pp229 - 249

Overall Total Patients	191
Successful entry into tic	88%
Stone Free Rate	78%
Symptom Free Rate	79%
Complications	9%
Follow-up (mos)	1 – 84

Calyceal Diverticulum with Stone Antegrade Percutaneous Diverticulectomy

- Ureterorenoscopy visualized PCN access
- PCNL removal of stone(s)
- Incision of ostium & fulguration of diverticulum
- Nephrostomy (Cope loop) + ureteral stent

Antegrade Treatment of Caliceal Diverticula

E Matsumoto & M Pearle: Advanced Endourology, S Nakada & M Pearle (eds): 2006, pp229 - 249

Overall Total Patients	256
Stone Free Rate	89%
Symptom Free Rate	89%
Obliteration of tic	60%
Complications	15%
Follow-up (mos)	25 (18 – 96)

Calyceal Diverticulum with Stone Laparoscopic Diverticulectomy

S Ramakumar & J Segura: J Endourol 2000; 14(10): 829

# of Patients	7
OR Time	80 Mins
Hospital Stay	3 – 6.6 days
Stone Free Rate	100%
Complications	Urine leak (1)
	Transfusion (1)

Best reserved for patients with very superficial diverticula who have failed alternate approaches.

- After undergoing PCNL with dilation of the diverticular neck and fulguration of the diverticular cavity, the patient is asymtomatic and stone free
- He has no family history of stone disease
- Serum chemistries reveal a normal serum creatinine, potassium, bicarbonate, calcium, phosphorus, uric acid and iPTH
- Should the patient be evaluated metabolically and if so what would you expect to find?

Metabolic Evaluation for Caliceal Diverticulum

- Metabolic abnormality in 25-100% of caliceal diverticula patients¹⁻³
- Matlaga et al⁴
 - 29 Tic vs. 245 CaOx vs. 162 normal patients
 - Tic & CaOx patients similar stone risk parameters
 - Hypercalciuria and high CaOx SS
 - 1. Hsu TH & Streem SB. J Urol 1998; 160: 1640
 - 2. Liatsikos EN, et al J Urol 2000; 164: 18
 - 3. Auge BK, et al. Br J Urol 2006; 97: 1053
 - 4. . Matlaga, BR, et al. Urol Res 2007; 35: 35

Stasis vs. Metabolic Abnormality

- 3 patients diverticular urine aspiration
- CaOx SS lower in diverticular urine than renal pelvis urine
- Hypothesis:
 - Urine stasis allows ppt of CaOx from urine to form stone thus lowering SS
- Most likely both stasis and metabolic abnormalities contribute to stone formation

CASE 4

- A 36-year-old woman with a history of stones has recurrent bilateral flank pain
- She occasionally passes stones, but frequently requires ER visits for pain
- She desires surgical intervention to clear the stones
- KUB and representative CT images are shown
- Would you agree to surgery and what procedure would you recommend?

To Treat or Not to Treat

- Nonmobile caliceal stones can cause pain
- 26 patients treated¹
 - 10 SWL
 - **15 PCNL**
 - 1 open surgery (1988)
- 25/26 had complete resolution of their pain

1. Coury TA, et al. Urology 1988; 32: 119-23

To Treat or Not to Treat

- 3 institutions retrospective review 1999-2008
- Ureteroscopic laser endopapillotomy
- 65 patients 176 procedures
- 82.8% significantly less pain or no pain
- Mean duration of resolution 26.2 months
- 60% had >1 year symptom relief
- No change in GFR from preop to follow-up

Gdor Y, et al. Ureteroscopic laser endopapillotomy to treat chronic flank pain associated with papillary calcification. Abstract WCE 2008

Ureteroscopy

- Access sheath
- Pressurized irrigant
- Holmium laser
- Unroof submucosal stones
- Basket large fragments
- Stent for 72 hours
- Expect stent pain 8%

- After ureteroscopy and stone removal, she is stone free. Stone analysis reveals 90% CaAp and 10% CaOx(m)
- She has a hx of frequent migraine headaches resistant to most medications except Topamax which she takes at 50 mg BID

TV	2.25L	
рН	6.89	
Ca	220	nl (<200 mg/d)
Oxalate	27	nl (<40 mg/d)
Citrate	220	nl >320 mg/d)
Sodium	175	nl (<200 mEq/d)
Uric acid	475	nl (<600 mg/d)

Topamax (Topiramate)

- Antiepileptic drug
 - Increasingly used for migraines and for weight loss
 - If predictions of increased use for weight loss are true, we will need to get a handle on the medical management of side effects with respect to lithogenic risk!
- Associated with a kidney stone in 1.5% of patients in published clinical trials
 - But... risk may be <u>under-reported</u>
 - 13 of 24 (54%) individuals on topiramate monotherapy or polytherapy developed clinical evidence of urolithiasis after a mean duration of 36.4 months
 - Goyal et al, Pediatr Neurol 2009;40:289-94

Topamax and Stones

- Underlying abnormality is renal tubular acidosis
 - Inhibition of carbonic anhydrase in the proximal and distal renal tubules
 - Profoundly low urinary citrate, high urine pH, high urine HCO₃, high urine brushite saturation, no change in urine Ca⁺⁺, low serum HCO₃ & K⁺
 - » Unexpected finding in one trial was a lower urinary oxalate concentration
 - Calcium apatite is major crystal moiety formed
 - References: Welch et al, Am J Kidney Dis 2006;48:555-63
 Kuo et al, J Endourol 2002;16:229-31
 Wasserstein et al, Epilepsia 1995;36(suppl 3):153

Topamax - Medical Management

- Patients reluctant to stop therapy
- So must treat metabolic side effects/ risk factors
 - Hypocitraturia
 - Potassium citrate?
 - No studies... Need to weigh benefit against risk of [↑]urine pH
 - Increase dietary alkaline load (K⁺ sources) and dietary citrate
 - No studies...
 - High urine pH
 - Acidify urine, e.g., with ascorbic acid?
 - No studies... Need to weigh benefit with risk of higher oxalate
 - High brushite saturation in urine
 - Push fluids

CASE 5

- A 63-year-old man with Type II DM, hypercholesterolemia and HTN has mild intermittent left flank pain
- UA revealed microhematuria
- Cystoscopy was negative
- IVP and CT were obtained

Case 5 Diabetic with Radiolucent Renal Calculi

Pre-op assess:

- Stone burden in each kidney by CT scan
- Anatomy of collecting system by CT IVP / RGP
- Renal Scan to determine differential renal function
- Sterile urine culture
- Admit day pre-op for IV antibiotics

Simultaneous Flexible Ureteroscopy & Percutaneous Access

Flexible Ureterorenoscopy
Prone - Head Down 20° Position

PCNL – Steps of the Procedure

- 1. Flexible ureteroscopy with access sheath
- 2. Fluoroscopic + ureteroscopic guided needle puncture of collecting system
- 3. Tract dilation dilating balloon catheter
- 4. Nephroscopy & lithotripsy
- Stent placement & nephrostomy removal
- 6. Foley catheter placement

- After treatment of his stone, a 24-hour urine specimen was collected
- What treatment should be recommended?

TV	1.75L	
рН	5.15	
Ca	275	nl (<200 mg/d)
Oxalate	37	nl (<40 mg/d)
Citrate	495	nl >320 mg/d)
Sodium	175	nl (<200 mEq/d)
Uric acid	235	nl (<600 mg/d)

UA Stones and Metabolic Syndrome

+ association
 between obesity,
 urine pH, & UA SS¹

 Insulin necessary for renal production of ammonia^{2,3}

- 1. Taylor and Curhan 2006
- 2. Krivosikova, et al 1998
- 3. Chobanian and Hammerman 1987

Metabolic Treatment

- Potassium citrate and fluids
- Watch CaP & CaOx SS
 - urine calcium is high
 - May need thiazides in future base on stone type
- Allopurinol
 - May be beneficial if concurrent gouty diathesis
 - Not necessary if not hyperurocosuric¹
- Expect urine UA levels to rise with alkaline therapy
- Follow with CT
 - 1. Tiselius HG, et al, BJU International 2001;88:158-168

CONCLUSIONSSelection of Optimal Treatment

Surgical Management

- Accurate estimation of stone burden
- Determination of intrarenal anatomy
- Assessment of relational anatomy of the kidney

Medical Management

- Comprehensive management of stone formers does not stop at surgical removal
- Identify pts w/ risk factors for stone formation
- Evaluate high risk pts