STRESS URINARY INCONTINENCE IN WOMEN

Leslie M. Rickey, M.D.
Associate Professor, Departments of Urology and Obstetrics & Gynecology
Female Pelvic Medicine and Reconstructive Surgery
Yale School of Medicine
Disclosures

- Advisory Board, Analytica
- Author, UpToDate
- Consultant, HealthMonitor Magazine
Overview

- Evaluation of stress urinary incontinence (SUI) in women
- Treatment options
- Surgical treatment
Trends in SUI surgery

- Health care claims data 2000-2009
- 27% increase in rate of SUI surgery due to increased sling procedures

Funk et al, Obstet Gynecol, 2012
Trends in SUI surgery

- State Ambulatory Surgery Database 2001-2009
- Age adjusted rates of midurethral slings
 - 2.36 \rightarrow 9.45/10,000 population
- Submucosal injections
 - 1.75 \rightarrow 1.41/10,000 population
 - Older patients, higher Charlson comorbidity index score

Suskind et al, Int Urogynecol J, 2013
Evaluation of SUI - History

- SUI vs UUI
- How urge-y is the patient?
- Voiding difficulties
- Pain symptoms, dyspareunia
- Prior treatment, pelvic surgery
- Prior radiation, current smoker
UUI and MUS

- Predictors of MUS failure:
 - Less urethral hypermobility
 - Increasing UUI at baseline
 - Prior UI surgery

Richter et al, Obstet Gynecol 2011
Paick et al, J Urol, 2007

- Decreased success rates in MUI vs SUI
 - 60% vs 80% success when defined as “very satisfied” and negative CST at 12 months
 Kulseng-Hanssen et al, Neurourol Urodynam, 2007
 - OR failure 2.4 (CI 1.6-3.6, p<.001)
 Stav et al, Int Urogynecol J, 2010
 - Subjective cure at 5 years 55% vs 81%
Post-operative UUI

- In patients with MUI, urgency component:
 - Resolves or improves 50-60%
 - Unchanged 30-40%
 - Worsens 5-15%

- De novo UUI symptoms in 10-15%

 Segal et al, Obstet Gynecol, 2004
 Botros et al, Neuourol and Urodynam, 2007
 Richter et al, NEJM, 2010
 Barber et al, Obstet Gynecol, 2008
Post-op voiding dysfunction

- AKA obstruction, change in flow, urgency, frequency
- Revision 1.5-3%
 - 70% unsatisfied, 56% would not recommend
 Abraham et al, Neurourol and Urodynam, 2015
- Possible to predict?
 - Pre-operative “voiding difficulty”
 - Concomitant surgery
 - Age
 - “valsalva voiding”
 - UDS parameters (flow rate, Pdet)
 - Prior UI procedure

Molden et al, Int Urogynecol J, 2010
Unger et al, Int Urogynecol J, 2015
Sokol et al, AJOG, 2005
Mesh exposure

• Occurs in 2-5% patients
• Current Smoking (3-5x)
• Diabetes (8-11x)
• Age

Withagen et al, Obstet Gynecol, 2010
Chen et al, Int Urogynecol J, 2008
Post-op pain

• Pain lasting more than 6 weeks (2-5%)
 • Pre-operative pain OR 3.21 (1.23-8.40)

• Dyspareunia (10%)
 • Pre-operative dyspareunia OR 4.66 (1.69-12.81)

Withagen et al, Obstet Gynecol, 2010
Abed et al, Int Urogynecol J, 2011

• Other risk factors
 • Age
 • Fibromyalgia

Geller et al, JMIG, 2017

• Pain more common in those patients seeking litigation vs not

Zoorob et al, FPMRS, 2016
Evaluation of SUI - PE

- Post-void residual
- Cough stress test
- Vaginal support
- Urethral hypermobility
- PFM strength
 - To determine home PFME vs office PT
- Myofascial tenderness
 - Predictor of post-op pain?
Role of UDS

• ValUE study
• 630 women with stress predominant UI and +CST randomized to UDS vs no UDS prior to sling surgery
• Success similar (77%) at 12 mos
 • ≥70% improvement on UDI
 • “much” or “very much” better on PGI-I
 • If -CST included, success still similar at 70%

Nager et al, NEJM, 2012
AUA Guidelines for Evaluation of SUI

• Standard: The evaluation of the index patient should include
 • Focused history
 • Focused physical examination
 • Objective demonstration of SUI
 • Assessment of post-void residual urine volume
 • Urinalysis and culture if indicated

• Recommendation: Additional diagnostic studies that can be performed to assess the integrity and function of the lower urinary tract include
 • Pad testing and/or voiding diary
 • Urodynamics
 • Cystoscopy
 • Imaging
Treatment of SUI

• Behavioral modification
• PFME vs office pelvic floor PT
• Pessary
• Surgical treatment
 • Peri-urethral bulking
 • Burch urethropexy
 • Suburethral slings
Stress urinary incontinence treatment

• Behavioral
 • Weight loss of 5-10% resulted in 60% decrease in incontinence episodes (vs 15% decrease in controls)
 Subak et al, J Urol, 2005

• Pelvic floor muscle exercises
 • Cochrane review in 2007 supported that PFM training be included in first-line conservative management for women with UI
 • RCT 460 women randomized to PFMT vs midurethral sling
 • 50% women in PFMT group crossed over to surgery group
 • Overall, greater objective and subjective cure in surgery group
 • BUT, 30% of PFMT only group reported improvement (“much better” or “very much better”)
 Labrie et al, NEJM 2013
Pessaries

- 190 women with SUI or MUI, 63% chose pessary trial
- 89% with successful fitting
- 50% still using at 6 mos

Donnelly et al, Int Urogyn J, 2004
PFM exercise vs pessary

- NIH/NICHD study, n=446
 - 50% with ≥14 UI episodes/week
- Randomized to pessary, PFME, or both
- 8 weeks of in office treatment
- 12 months:
 - “much better” or “very much better” in 53% PFME vs 58% pessary
 - No bothersome SUI symptoms in 62% both grps
 - >75% reduction in weekly UI episodes in 57% in both grps

Richter et al, Obstet & Gynecol 2010
Surgical treatment of SUI

- Peri-urethral bulking
- Burch urethropexy
- Suburethral slings
 - Autologous fascial sling
 - Mid-urethral sling
 - Retropubic MUS
 - Transobturator MUS
 - Single incision MUS
Periurethral bulking

- 30-40% dry, 50% improved at 1 year
 - 67% responders “dry” at 24 months
- Approximately 50-60% patients require >1 injection
- Temporary retention 40%

Mayer et al, Urology, 2007
Ghoniem et al, J Urol, 2010

www.oxfordgynaecology.com
Fascial sling vs Burch urethropexy

- 655 women randomized to PVS or Burch
- Outcomes
 - Success rate higher for sling (66% vs 49%, p=.001) at 24 mos
 - Treatment satisfaction 86% vs 78%, p=.02
- Sling revision in 6% PVS vs 0% Burch
- De novo UUI requiring treatment 3% in both groups

 Albo et al, NEJM, 2007

- E-SISTEr – 74% subjects enrolled
 - 5 year continence – 31% vs 24%
 - Satisfaction – 83% vs 73% (p=.04)
 - Retreatment in 2% vs 12% (p<.0001)

 Brubaker et al, J Urol, 2012
RMUS (TVT)

- Ward, Hilton data, BJOG 2008
 - 175 women underwent TVT
 - 98 with 5 year follow-up
 - 72 with full data
 - 58/72 (81%) with neg. pad test
 - 75% if last result carried forward
 - 63% reported cure of leakage on questionnaire
 - 91% satisfied or very satisfied with results
 - 2.3% underwent re-operation for USI
 - 3 vaginal tape erosions (2 detected at 5 years)
 - De novo urgency in 2%, UUI in 1%
RMUS vs TMUS

- NIH sponsored RCT of 597 women
 - At 12 months, similar satisfaction (86% vs 90%, p=0.14)
 - 79% vs 85% at 5 years (p=0.15)
 - Persistent urgency incontinence in 13-14%

- Adverse events over 24 months
 - Mesh erosion in 2.7% subjects
 - 7 additional erosions at 5 years – 3.8%
 - Pain >6wks 2.3%
 - Voiding dysfunction 3.4% RMUS vs 2% TMUS
 - Neurologic symptoms 5% RMUS vs 9.7% TMUS (p=.04)

 Richter et al, NEJM, 2010
 Brubaker et al, AJOG, 2011
 Kenton, AJOG 2011
RMUS vs TMUS

• RCT of 170 women, mean f/u 18.6 mos.
• Outcomes
 • ~ 60% “dry”, 25% improved, 15% no change
 • 80% reported bladder symptoms “much better” or “very much better”
 • Re-treatment for SUI 4.7% TVT vs 1.3% TOT
• Complications
 • Bladder perforation in 7% TVT vs 0% TOT
 • Erosions in 5.6% TVT vs 1.2% TOT
 • Leg pain or difficulty ambulating in 2.4% TVT vs 4% TOT (NS)
• New bladder symptoms
 • New or worsened UUI in 4-10%
 • 3-6% required catheterization > 6 weeks after surgery or had surgery for obstructed voiding

Barber et al, AJOG March, 2008
Longer term outcomes

- 273 women randomized RMUS vs TMUS
- 95% had 5 year follow up
- 85% vs 86% with neg CST, neg pad test, no re-tx
- Satisfied: 85%
- Recommend to friend: 90%
- No new erosion/extrusion

Laurikainen et al, J Urol 2014
Other considerations…

• RCT of 164 women with ISD (slightly underpowered)
 • ISD defined as MUCP ≤20cm H2O or leak with ΔPves ≤60cm H$_2$O

• Outcomes
 • Primary endpoint = USI at 6 months (n=138)
 • USI in 21% TVT vs 45% TOT (p=0.004)
 • 0% TVT vs 13% TOT requested surgical re-treatment (p=.003)
 • Improved UUI ~40% both groups

Schierlitz et al, Obstet & Gynecol, Dec 2008
Fascial sling vs MUS

- 201 women who self-selected PVS vs MUS with minimum 12 mos f/u (2011-2012)
- 91 PVS; 110 MUS
 - MUS grp with more baseline UUI (86% vs 74%)
- Cure (no subj SUI, neg CST) similar (76% vs 81%)
 - 2.2% vs 3.6% w/persistent SUI symptoms
- UUI persistence, resolution, and de novo symptoms similar
- 1 mesh erosion, 1 hernia
- Sling release for retention in 1 MUS patient and 2 PVS patients
- VAS scale (10=very happy) similar: 8.4

Mock et al, J Urol, 2015
Single incision slings

- Systematic review (excluded TVT-Secur)
 - Similar subjective and objective cure rates in SIMS and TMUS
 - Lower post-op pain scores in SIMS
 - “trend” towards more repeat continence surgery in SIMS (RR 2.0, CI 0.93-4.31)

Mostafa et al, Eur Urol, 2013
SIMS vs MUS

- RT SIMS vs TMUS, n=224
 - Women with ISD excluded
 - Obj cure = neg CST
 - Subj cure = no SUI symptoms on ICIQ
 - Similar obj cure (96% vs 93%) and subj cure (94% and 97%) at 12 mos
 - 3 vs 2 subjects had repeat SUI surgery
 - Groin pain >6 mos in 0% v 6% (p=.014)

- Lee et al, AJOG, 2015

- RT RMUS vs SIMS, n=71
 - 3 years follow up
 - Failure if +SUI on KHQ or re-tx
 - 9% MUS vs 53% SIMS
 - Repeat surgery in 21% SIMS vs 0 RMUS

- Basu, Duckett, Int Urogynecol J 2013
<table>
<thead>
<tr>
<th>Procedure</th>
<th>12-23 mos (Range)</th>
<th>24-47 mos (Range)</th>
<th>48 mos + (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autologous fascial sling</td>
<td>90% (76-98)</td>
<td>81% (72-88)</td>
<td>82% (67-93)</td>
</tr>
<tr>
<td>Synthetic midurethral sling</td>
<td>84% (78-89)</td>
<td>81% (72-88)</td>
<td>84% (77-89)</td>
</tr>
<tr>
<td>Burch urethropexy</td>
<td>81% (73-87)</td>
<td>76% (68-83)</td>
<td>73% (65-80)</td>
</tr>
<tr>
<td>Collagen periurethral bulking</td>
<td>48% (41-55)</td>
<td>32% (24-42)</td>
<td>30% (18-45)</td>
</tr>
</tbody>
</table>
Urgency incontinence outcomes at 12 to 23 months

<table>
<thead>
<tr>
<th>Procedure</th>
<th>De novo UUI (%)</th>
<th>Persistent UUI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autologous fascial sling</td>
<td>9 (6-13)</td>
<td>33 (28-40)</td>
</tr>
<tr>
<td>Synthetic midurethral sling</td>
<td>6 (3-10)</td>
<td>44 (26-63)</td>
</tr>
<tr>
<td>Burch urethropexy</td>
<td>8 (5-11)</td>
<td>17 (4-40)</td>
</tr>
</tbody>
</table>
2014 AUGS/SUFU MUS statement

• Polypropylene material is safe and effective as a surgical implant
• The monofilament polypropylene mesh MUS is the most extensively studied anti-incontinence procedure in history
• Polypropylene mesh midurethral slings are the standard of care for the surgical treatment of SUI
• The FDA has clearly stated that the polypropylene MUS is safe and effective in the treatment of SUI
Future?

- Autologous adult stem cells (muscle derived stem cells and adipose-derived stem cells)
- Prevention efforts – NIH/NIDDK PLUS Consortium
 - Develop the evidence base for normal or healthy bladder function and identify behavioral and other risk factors for conditions associated with LUTS
 - Establish the evidence base scientific basis for future primary and secondary prevention intervention studies
Summary

• Know your patient
• Remember non-surgical options

• Surgical treatment
 • Counseling is key
 • Set appropriate expectations
 • Be vigilant for complications/side effects